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ABSTRACT 

The Application of Finite Element Methods to Aeroelastic Lifting 

Surface Flutter 

by 

Matthew Lucas Guertin, 2d Lt USAF 

Aeroelastic behavior prediction is often confined to analytical or highly 

computational methods, so I developed a low degree of freedom computational 

method using structural finite elements and unsteady loading to cover a gap in the 

literature. Finite elements are readily suitable for determination of the free 

vibration characteristics of eccentric, elastic structures, and the free vibration 

characteristics fundamentally determine the aeroelastic behavior. I used 

Theodorsen’s unsteady strip loading formulation to model the aerodynamic loading 

on linear elastic structures assuming harmonic motion. I applied Hassig’s ‘p-k’ 

method to predict the flutter boundary of nonsymmetric, aeroelastic systems. I 

investigated the application of a quintic interpolation assumed displacement shape 

to accurately predict higher order characteristic effects compared to linear 

analytical results. I show that quintic interpolation is especially accurate over cubic 

interpolation when multi-modal interactions are considered in low degree of 

freedom flutter behavior for high aspect ratio HALE aircraft wings. 
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Chapter 1 

Introduction 

“Adde parvum parvo magnus acervus erir” 

“Add little to a little and there will be a great heap” 

~Ovid, Latin poet [1]. 

1.1. Aeroelasticity Defined  

Aeroelasticity is the field of study concerned with the interaction between the 

deformation of an elastic structure in an airstream and the resulting coupled effect 

on the aerodynamics and structural dynamics [2]. The interdisciplinary convolution 

of the components of aeroelasticity is best illustrated by a Venn diagram or Collar 

triangle in Figure 1.1, which shows how the ternary component forces interact to 

produce aeroelastic phenomenon such as flutter [2–7]. 
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Figure 1.1 – Collar aeroelastic Venn diagram 

1.2. Motivation  

A study of aeroelastic phenomena in wings structures is of great importance 

to the continued development and design of advanced aircraft as radical designs are 

utilized to capture maximum performance. Determination of the aeroelastic 

behavior of a simplified wing-like structure is a fundamental aspect of industrial 

practice in flight vehicle design, and is a historical starting point for complex 

airframe analysis [5]. The finite element method (FEM) is well suited for the 

determination of structural vibrational characteristics. Coupling the FEM with 

accurate lifting load prediction techniques such as strip theory or the vortex panel 
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method serves as a pre-design, and airworthiness check tool [5] for many aircraft 

design industries. Thus, a detailed understanding of the FEM, lifting load techniques, 

and an integration of both disciplines is important for new aerospace engineers.  

The original purpose of this thesis was to produce a teaching tool for the 

application of the FEM and simplified lifting load prediction to aeroelastic analysis. 

Basic knowledge of flight mechanics is assumed since such a discussion is a related 

but independent field. This project will focus primarily on fixed wing lifting surface 

structural dynamic response, in particular flutter. The contributions herein are 

derived from modern courses and texts in aeroelasticity in order to further an 

understanding of the related material necessary for aeroelastic analysis, and to 

explore the “black box” elements of many commercial techniques.  

1.3. Thesis Overview  

Chapters 2, 3, and 4 constitute background material on structural dynamics, 

the FEM and steady aerodynamics necessary for an understanding of dynamic 

aeroelastic flutter. Chapter 2 covers the history and importance of aeroelastic 

analysis. Chapter 3 addresses the structural dynamics fundamental to dynamic 

aeroelasticity, specifically coupled bending and torsional vibrations of wing like 

structures. Chapter 4 presents a simplified aeroelastic model to demonstrate the 

coupling of structural and aero forces independent of structural inertia.  

Chapters 5 and 6 incorporate unsteady aerodynamics coupled with a 

structural FEM model for the prediction of critical aeroelastic flutter behavior. 



www.manaraa.com

 4 

Chapter 5 introduces the phenomenon of dynamic flutter as a time varying response 

to harmonic loading, with the inclusion of structural inertia.  Chapter 6 presents a 

description of the computational lifting strip method joined with a structural FEM 

model for the prediction of aeroelastic behavior. 
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Chapter 2 

Literature of Aeroelastic Analysis 

As mentioned in the introduction, aeroelasticity is a ternary interaction of 

inertial, elastic and fluid forces on a structure. The study of aeroelasticity requires 

prior study of all constituent fields in regard to each applied component of the 

problem: dynamics, solid mechanics, and aerodynamics, respectively [4]. The 

coupling of any two of these fields produces an outgrowth in its own right, such as 

the coupling of dynamics and solid mechanics to produce structural dynamics 

(vibration), or the coupling of aerodynamics and solid mechanics to produce static 

aeroelasticity. These two dual coupled fields will be addressed in this thesis prior to 

the full ternary coupling phenomenon of dynamic aeroelasticity.  

There are, of course, many other forces that can influence aeroelastic 

characteristics in a range of flight conditions such as thermal radiation, chemical 

disassociation, and shock wave interaction [8] that fall under the study of 

aerothermoelasticity, but such a discussion is beyond the scope of this report. 

Aeroelastic phenomenon is also typically and historically observed in flight control 

systems termed aeroservoelasticity [4], but this study will focus on the derivation 



www.manaraa.com

 6 

and description of lifting surface flutter. The same principles apply to 

aeroservoelasticity, but require a study of control methods [9].  

2.1. Historical Aeroelastic Analysis 

The study of flutter and aeroelasticity in general is of utmost importance to 

the aerospace industry as a design driver even in the early days of flight. The first 

success of the Wright Flyer in late 1903 is due in large part to a consideration of 

aeroelastic effects. The Wright brothers developed a “wing warping” mechanism for 

lateral control [3], which allowed for controllability without drastically altering the 

local wing camber [10]. The brothers also recognized an adverse aeroelastic effect 

on the efficiency of the propeller blades and corrected it with backward sweep, 

which maintained the total lift while moving the spanwise center of pressure 

inboard [10]. However, just days prior to the Wright brother’s success, Samuel 

Langley unsuccessfully attempted powered flight in his monoplane, which crashed 

into in the Potomac due to a lack of torsional rigidity [7] as shown in Figure 2.1. 

Excessive wing twist caused by high wing camber coupled with low torsional 

stiffness resulted in wing structural failure. Similar aeroelastic phenomenon in other 

monoplane designs resulted in the dominance of biplane designs for 30 years until 

the advent of semi-monocoque structures [3].  

The first recorded and documented occurrence of aircraft flutter was the 

Handley Page O/400 bomber in 1916 by F. W. Lanchester as shown in Figure 2.1. 

The plane experienced violent in-flight asymmetric torsional oscillation of the 
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fuselage and pitch oscillation of elevators due to a lack of torsional stiffness between 

the independent port and starboard elevators [3, 5, 7]. Lanchester discovered that 

the oscillations were not due to any resonance of vibration sources, such as the 

engine, but were self-excited by an interaction with airflow [7].  

 

Figure 2.1 – Langley Flyer and Hanley-Page O/400 bomber [11] 

These two historical failure cases are indicative of the two major aeroelastic 

failure modes: static aeroelasticity and dynamic aeroelasticity [6]. The former mode 

considers the nonoscillatory interaction of aerodynamics and solid mechanics 

where inertial forces do not play a significant role. The case of the Langley flyer 

failure points to a case of static divergence of the wing structure once the 

aerodynamic forces caused the wing to twist beyond the structural restoring 

moment capacity. The primary design considerations to prevent static failure are 

structural stiffness, and load redistribution due to a change in the effective wing 

chamber. 
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Figure 2.2 – Modal coupling as a result of convolution and corresponding 

disturbance time history [10] 

Dynamic aeroelasticity or flutter incorporates the oscillatory effects of the 

ternary interaction previously discussed. Classic flutter is a non-conservative 

mechanics problem and is an extension of the static cases. Since all non-

conservative loading problems contain dynamic effects, classic flutter is a more 

accurate representation of aeroelasticity. The case of the Handley Page O/400 

bomber is an example of a combination of two or more modes of vibration 

coalescing to extract energy from the airstream to create flutter as shown in Figure 

2.2. The frequencies at point A are well separated and the motion damps out over 

time. At point B, any initial disturbance, such as a wind gust, will produce harmonic 

limit cycle oscillations (LCO), which can lead to fatigue failure. Any operation at 

point C can result in immediate failure as the disturbance grows bounded by 

nonlinear effects [10]. It is important to note that flutter is not a forced resonant 

response as discovered by Lanchester, since the airflow is initially steady prior to an 

interaction with the system. The destruction of the Tacoma Narrows Bridge in 1940 
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is often falsely attributed to resonance [12], when in fact, the failure was due to a 

form of torsional self-excitation caused by vortex shedding 

2.2. Aeroelastic Modeling  

The hallmark of a good model is simplicity in design and ease of 

interpretation. There are many considerations in the ternary interactions of 

aeroelasticity in full aircraft structures, but a simplified model can provide realistic 

physical predictions with appropriate parameters. In a review of the state-of-the-art 

in 1970, Dowell [13] categorizes all panel flutter research and models into four 

types. Neglecting nonlinear aerodynamic modeling, such as computational fluid 

dynamics (CFD) methods, the model types still apply today to general aeroelastic 

analysis and are outlined in Table 2.1. 

Table 2.1 – Types of flutter analysis 

Model Types 
Quasi-steady 

aerodynamics 
Linearized 

aerodynamics 
CFD 

Linear 
Structural 

Type 1 Type 2 *Type 5 

Nonlinear 
Structural 

Type 3 Type 4 *Type 6 

 

Dowell’s categories are based on the structural and aerodynamic theories 

employed: 1) Linear structural theory; quasi-steady aerodynamic theory [14]; 2) 
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linear structural theory; full linearized (inviscid, potential, finite-state) aerodynamic 

theory [15]; 3) nonlinear structural theory; quasi-steady aerodynamics [16]; 4) 

nonlinear structural theory; full linearized aerodynamic theory [17]. Type 4) is the 

most general, and type 1) is the simplest but has two major drawbacks: a) structural 

nonlinearities are not considered, thus only the flutter boundary can be predicted 

accurately with no information regarding the actual flutter oscillations; b) the use of 

quasi-steady aerodynamics neglects unsteadiness and three-dimensional effects and 

cannot be used in the transonic region where flutter is most likely to occur.  

One could include an additional 2 types of flutter analysis shown as Type 5 

and Type 6. Those analyses include coupled nonlinear CFD, fluid-structure 

interaction, aerodynamic models with some consideration for turbulence, and other 

three-dimensional effects. However, the combination of aerodynamic and structural 

nonlinearities adds enormous complexity to the flutter analysis problem, and often 

does not influence the flutter boundary characteristics [15, 18]. Additionally, many 

three-dimensional effects, such as boundary layer interaction or wingtip downwash, 

minimally affect the behavior of long slender wings in subsonic cruise. 

Regardless of the structural/inertial or aerodynamic model employed, there 

are certain basic mathematical requirements to accurately capture aeroelastic 

behavior. The model must represent the vibration behavior over a range of interest, 

usually 0-40 Hz for streamlined commercial jet liners and 0-60 Hz for streamlined 

military aircraft [5]. The vibration characteristics of large bluff body stationary 

structures such as a cable stayed bridges are typically one or two orders of 
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magnitude lower at 0.1-1 Hz [19]. However, the flutter characteristics of bluff and 

streamlined bodies differ substantially based on the Kutta condition, which requires 

smooth, attached flow at the sharp trailing edge of streamlined bodies [20]. The 

model must also yield mode shapes, natural frequencies and modal masses in the 

range of interest [5]. 

 

Figure 2.3 – Low DOF cantilever wing model  

 The complexity of the model is necessity dependent and this thesis will focus 

on a pre-design phase style, low DOF model commensurate with a teaching tool 

objective. Many low DOF analyses include only binary or two DOF behaviors 

(bending and torsion), which are typically investigated analytically. The common 

alternatives are highly computational CFD-FEM methods. However, one can show 

that a low DOF model, as shown in Figure 2.3, with proper simplifying assumptions 

can accurately predict flutter behavior. 
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2.2.1. Structural/Inertial Model  

The prediction of flutter behavior is conveniently and classically formulated 

in matrix terms. In fact, the origin and development of Matrix Structural Analysis 

(MSA), a precursor to the FEM, naturally lies in the field of aeroelasticity [21]. The 

nomenclature familiar in the application of FEM originates from a MSA source book 

coauthored by Collar [22], the developer of the aeroelastic triangle.  The genesis of 

the structural element can also be traced to the work of Duncan and Collar[23] who 

pioneered the application to the numerical analysis of propeller blades [2]. The 

modern FEM application is the use of beam elements to model wings and aircraft 

components. The modified beam element is capable of bending, twisting, shear and 

axial deformation. Thus, when a wing is broken into small components, the 

vibration characteristics can be accurately modeled with a small number of 

elements placed along a reference axis [5]. The mass of the structure is then 

distributed along the nodes of the individual beam elements.  

The structural model employed in this study is linear, in that it is a model for 

which the principle of superposition holds. Thus, the classical formulation of the 

modified bending and torsion beam element applies. The linear model is sufficient 

for flutter boundary determination, but does not accurately predict LCO behavior 

post flutter. However, even a linear structural model must consider coupled bending 

and torsion effects as a result of an offset between the sectional center of gravity 

and center of rotation. The vibrations of beams having noncollinear elastic and mass 

axes is a classical field of study with many sources [24–28], and is a foundation of 

general aeroelastic analysis.  
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2.2.2. Aerodynamic Model  

The aerodynamic models used in this study for aeroelastic prediction are 

categorized as fully linearized in accordance with Dowell’s type 2 and 4 

aerodynamics. In this case, fully linearized means that the aerodynamic forces are 

represented as functions of non-dimensional coefficients with respect to a reference 

flight condition such as small variation in angle of attack and attached flow.  

Linearization has been extremely important in the development of aeroelastic 

analysis since the early days of simulation when nonlinear equations were 

practically impossible to solve computationally [29]. Linearized aerodynamic 

theories were pioneered by Theodorsen [30] and Collar [22], and serve as a 

foundation of aeroelastic analysis. Modern computational methods employ the 

general set of nonlinear equations, but linearized models can be used in all flight 

regimes with empirical correction.  

2.2.2.1. Lifting surface flutter 

The classical theories of aeroelasticity deal with the stability of an elastic 

structure in the wind. In typical elastic problems, the external forcing is prescribed 

and the stress and deformation can be considered independent of the forcing. When 

light aerodynamic structures are considered, the forcing inherently depends on the 

displacement of the structure, so typically there exists a critical wind speed where 

the aerodynamic forcing overcomes the elastic stiffness [20]. The classical approach 

to formulate the stability problem is to set up a system of homogeneous equations 

satisfied by a trivial solution or neutral stability in the case of flutter [4]. Since only 

the modes of deformation are of interest in a stability problem, it is acceptable to 



www.manaraa.com

 14 

consider the displacement as infinitesimal about equilibrium and the linearity of the 

flutter problem is uniquely justified. The classical formulation of the lifting surface 

flutter stability problem relies on the linearity assumption.  

Theodorsen developed the classical unsteady lifting load strip model for 

harmonic motion, which directly applies to the stability characteristics of fluttering 

lifting surfaces [30, 31]. Theodorsen applies a frequency domain complex 

eigenvalue analysis to quantify the interaction of two or more vibrating modes in 

coalescence as observed by Lanchester [32]. The Theodorsen analysis applies to 

many classical stability boundary calculation techniques, most notably the 

determinate iteration method developed by Hassig [33]. Other stability analyses like 

swept wing divergence [34, 35], or composite geometry effects [36, 37] are covered 

extensively in the literature.  

There are a number of textbooks that offer a complete analytical coverage of 

aeroelastic analysis including Fung [20], Bisplinghoff [6, 8], Hodges [3], Dowell [4], 

and Wright [5]. Many of the texts present a highly analytical formulation of the 

flutter problem with binary considerations, and only Hodges and Wright present an 

application of FE analysis for wing structures. The application of FE analysis to low 

order DOF systems is minimal in the literature [38] since stability characteristics are 

typically treated analytically. An assumed displacement shape of the Rayleigh-Ritz 

type is typical of analytical flutter approximations [39]. The application of FE 

analysis is more common in full scale industrial models where an entire aircraft 

structure is considered [15, 40]. 
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2.2.2.2. Panel flutter  

 

Figure 2.4 – Wall mounted surface panel [13]   

Panel flutter is worth mentioning in an analysis of lifting surface flutter since 

the methods and research are similar and complementary. Panel flutter differs from 

lifting surface flutter since it is solely a supersonic phenomenon and only one side of 

the “panel” or plate is exposed to free stream flow while the other side is internal to 

the structure and experiences dead air [41]. The example diagram in Figure 2.4 

illustrates a typical panel setup [13] 

Panel flutter analysis and experimentation also employs simply supported 

and fixed-fixed boundary conditions since the panel represents the skin of the lifting 

surface, unlike lifting surface flutter which represents the entire wing structure. 

Panel flutter usually occurs as LCO at supersonic or hypersonic Mach for small plate 

like panels, but long fuselage like panels tend to experience extremely low 

frequency oscillations unlike any type of lifting surface flutter [13].   
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The use of FE analysis is well established for panel flutter prediction [14, 16, 

41, 42], and one can apply the same principles to lifting surface flutter prediction. 

Olson (1967) extends beam a vibration problem to two-dimensional panel flutter 

considering only the two lower modes of plunge and plunge rate. Olson provides an 

explicit dynamic stiffness matrix with skew symmetric off diagonal terms consistent 

with a non-self-adjoint problem. The dynamic stiffness matrix presented is simply 

the addition of the symmetrical structural stiffness and asymmetric aerodynamic 

stiffness matrices. Weisshaar (1976) outlines a least-weight optimization study 

using finite elements and Type 1 panel flutter analysis. Mei (1977) extends the 

Olson paper to an FEM application of structural nonlinearities due to large 

amplitude oscillation. Grey (1991) further extends Mei’s nonlinear method to 

hypersonic aerodynamics as is characteristic of many modern applications of panel 

flutter research [43, 44]. 
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Chapter 3 

Structural Vibration 

Aeroelastic flutter is a classical and continuing problem in aeroelastic design 

and a full understanding begins with an analysis of the vibration characteristics of 

wing like structures. Flutter is characterized as an undesirable forced vibration type 

problem that can cause adverse structural dynamic effects. In general, the response 

of a system to external loads is dependent on the natural frequencies and the 

damping of the free system. While flutter behavior is not solely due to the 

application of external loads, but rather is due to self-excitation, the principles of 

forced vibration hold.   As a subset of general forced vibration principles, harmonic 

motion will be assumed and investigated herein in the form given by 

      
 ̃  3.1 

where   is a generalized coordinate,    is the amplitude and  ̃ is the complex 

characteristic exponent describing the decay.  
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3.1. Equations of Motion 

The equations of motion can be derived in a number of ways, but an energy 

method using Lagrange’s equations offers a convenient formulation for any number 

of discrete generalized or physical coordinates. The formulation of the differential 

equation of motion for a dynamic system is given as [5] 

  

  
(
  

  ̇ 
)  

  

   
 

  

  ̇ 
 

  

   
 

 (  )

 (   )
    

 3.2 

where      and   are the kinetic energy, potential energy and dissipative function, 

respectively. The kinetic energy term is given by the formulation 
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3.3 

the potential energy term considering only structural strain energy is given by  

   
 

 
∑ ∑      

 
 

 
   , 

3.4 

and the dissipative function is given as an internal structural function of the 

generalized coordinate rate by 

   
 

 
∑ ∑     ̇  ̇ 

 
 

 
 . 

3.5 

 The coefficients    ,     and     represent the structural inertia, stiffness, and 

damping, and      is the     or     generalized coordinate of interest out of   DOF. 

The use of the terms A, E, D is to maintain consistency with later matrix formulation. 

The coefficients may be dependent on the generalized coordinates, but they are 

constant when only small displacements are considered, consistent with a linear 

structural system [8].  In the SDOF case, the coefficients are also scalar since    . 
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On the right hand side of equation 3.2,     
 is the generalized force and    is the 

virtual work done on the system, which in general has non-conservative 

components and conservative components not accounted on the left hand side of 

the equation [3]. The formulation for the non-conservative virtual work includes the 

external forcing minus the internal dissipation force  

 
             (  

  

  ̇
)     

3.6 

The internal dissipation is obviously represented in equation 3.2 on the left hand 

side of the equation in a form of structural damping. The formulation for the 

external virtual work (   ) shown below includes point forces, spanwise (strip) 

forces and surface forces 

 
                ∫            

    

∬              

    

  
3.7 

3.2. Free Vibration of Single Degree of Freedom Systems  

The single degree of freedom (SDOF) system illustrates the concepts 

common to all dynamic systems, such as the inclusion of damping, and provides a 

starting point for general vibration analysis [45]. A discrete SDOF system is 

characterized by one rigid component with a flexible connection described by a 

single coordinate such as bending displacement or rotation. All SDOF systems are 

described by the same governing equation of motion with different symbols 

depending on the dynamics of interest. Continuous systems with flexible 
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components can be modeled as discrete systems as will be covered in the following 

sections, but the governing principles are the same.   

 The energy formulation can be applied to a cantilever wing to reduce the 

wing structure to a SDOF system with a tip mass for the purpose of an illustration of 

the principles of dynamic systems [45] as shown in Figure 3.1. If no external forcing 

is present in the SDOF system model, an application of equation 3.2 gives the 

resulting second order ordinary homogeneous differential equation, 

   ̈    ̇      ( )    
3.8 

In the absence of external forcing an initial condition is imposed and the motion of 

the system takes either a nonoscillatory or oscillatory form in accordance with 

D’Alembert’s Principle. The oscillatory form is characteristic of low values of 

damping typically encountered in underdamped aircraft so only this case will be 

considered [5].   

 

 Figure 3.1 – Cantilever wing model and cooresponding SDOF system 

 Assuming free harmonic motion from equation 3.1 yields the characteristic 

quadratic equation of the SDOF cantilever beam model  

  ̃    ̃      
3.9 
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with the “characteristic solution” or eigenvalues of the of the system given as 
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  3.10 

The eigenvalues can be non-dimensionalized in the form 

  ̃            √              3.11 

where  
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;            √    ;          

 

    
 

 

     
  

3.12 

Here    is the natural circular frequency of the system,    is the damped circular 

frequency of the system,   is the damping ratio or damping normalized for critical 

nonoscillatory motion,      [45].  The same characteristic approach applies to 

discrete multiple degree of freedom (MDOF) systems. 

 The difference between the natural circular frequency and the damped 

circular frequency is a function of the value   which typically ranges between 0.01 

and 0.1 for the majority of real structures that undergo oscillatory motion. In the 

extreme case of       the frequency of the damped system is nearly equal to that 

of the undamped system,          .  Thus, in practice, the damping is ignored 

when determining the natural frequency and mode shapes of a system [45].  

3.2.1. Natural frequency  

The natural frequency occurs in an unforced case where the system acts 

independent of external forces including gravity. The natural frequency is only 

significant when assuming harmonic behavior. For MDOF systems, increases in the 
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mode number correspond to higher natural frequencies, and coupled vibration due 

to offset shear and mass centers results in unsorted distribution of the natural 

frequencies. For example, when coupled rotation and bending are considered, the 

first few usable (non-boundary condition) modes of the system may be intermixed 

between bending and torsion. Typically the lowest energy (frequency) mode is 

dominated by bending motion and the next lowest is dominated by torsion in a 

lightly coupled system where the shear and mass centers are only slightly offset.  

3.2.2. Damping formulations 

Damping represents the energy losses associated with a real system.  The 

decreases in response amplitude in real systems are thus attributed to damping 

effects which typically convert mechanical and kinetic energy to thermal energy. 

However, damping is not necessarily an essential property of the structure itself, but 

often depends on the surrounding medium [46]. This inessential property of 

damping will be especially important with an inclusion of aerodynamic forces. 

Damping is typically described in two ways: viscous damping due motion within a 

fluid and structural damping due to internal friction within the material and joints.  

3.2.2.1. Viscous damping 

In many practical applications the damping forces are assumed to be viscous 

simply because the mathematical formulation for simple viscous damping is a linear 

proportion of the mass and stiffness of the structure know as Rayleigh damping [47] 
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                   3.13 

The scalar coefficients    and    are typically determined for a range of frequencies, 

       but a SDOF system has only one frequency of interest so the formulation of 

the coefficients is not applicable and damping is typically expressed as a scalar value 

based on experience. With the addition of multiple discrete coordinates and 

corresponding frequencies, the coefficients are formulated [48] to satisfy desired 

damping ratios at the frequency extremes in the range of interest,   and   : 
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3.14 
 

However, the desired damping ratios do not remain constant over the range of 

interest, so the formulation above leads to a conservative estimation. Viscous 

Rayleigh damping is applied at the system level and is applicable for any form of 

excitation.   

3.2.2.2. Hysteretic damping 

A simplified mathematical formulation of structural damping known as 

hysteretic damping relies on the dissipative force defined in equation 3.6 being 

proportional to the velocity and consequently the frequency of oscillation. 

Considering the SDOF cantilever model the harmonic motion  ( ) is described as 

function of the frequency,    and phase,     of the response, 

  ( )  | |    (    )  
3.15 
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With a definition of the dissipative force as 

 
 

  

  ̇
     ̇  3.16 

the work energy dissipated is derived as follows[46]: 

     ∫  ̇    

         ∫   ̇    
    

 
       

        ∫    | |      (    )   
    

 
 

           | |    3.17 
 

As shown, the dissipative energy is dependent on the quadrature of the 

displacement, or physically at 90˚ phase to the displacement [5].  

 Experimental investigations have shown that the dissipative energy    in 

many metals is independent of frequency for the range of interest in aircraft 

systems [46, 47] so the damping  ( ) for the SDOF model must be represented as a 

frequency dependent function to cancel out the frequency dependence in equation 

3.17, 

 
 ( )  

  

 
  3.18 

Considering only harmonic motion and using complex algebra in the frequency 

domain, the dissipative force becomes  

   

  ̇
   ̇  

  

 
 ̇        3.19 
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where   is the damping coefficient or loss factor and    is equivalent to 

differentiation in the time domain[5]. If the dissipative force in equation 3.19 is 

substituted into equation 3.2, the new equation of motion for the SDOF system is  

   ̈           ( )     
3.20 

or rewritten as 

   ̈   (    )   ( )    3.21 

with complex stiffness in place of the prescribed damping in equation 3.8. This 

frequency domain formulation of the equations of motion can only be used when the 

excitation is assumed to be harmonic and can be difficult to manipulate, but it is a 

classical method in the determination of aeroelastic behavior [6].  

3.3. Application of the Finite Element Method  

The goal of a structural dynamic analysis includes determination of the 

natural mode shapes and frequencies of an elastic structure in free unforced 

vibration. The FEM is well suited for this type of analysis since the mode shapes can 

be accurately derived for geometrically complex structures, such as channel beam 

sections commonly found in wing spars. The FE structural model is typically 

formulated as an eigensystem, where the eigenvalues and eigenvectors represent 

the natural frequencies and the mode shapes, respectively. The lowest eigenvalues 

correspond to the lowest characteristic frequencies of the physical system and are 

typically more interesting than the higher modes simply because the physical 

system tends to experience the lower modes as dominant vibration frequencies.   
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This section focuses on the FE derivation of the bending beam element and 

twisting torsion element used later for the dynamic analysis of lifting surfaces. The 

classical cubic beam element and linear torsion element are a natural foundation of 

the discussion and will lead to the derivation of the higher order quintic beam 

element and cubic torsion element capable of directly incorporating stress free 

conditions [49].  

3.3.1. Classical element formulation  

 
Figure 3.2 – Combined bending and torsion element  

The classical uniform beam element of span length   , shown in Figure 3.2 

joined with a linear torsion element, incorporates bending deflection   in one plane 

with no shear deformation where the strain potential energy in bending is  
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 3.22 

and the kinetic energy is  
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3.23 

The flexural rigidity EI and mass per unit length   are assumed constant across the 

beam element. It is assumed that the bending displacement can be expressed as a 

Hermite cubic polynomial as function of the spanwise coordinate, y [50] 

  ( )            
     

   
3.24 

where the unknown coefficients         are determined based on the inter-element 

boundary conditions or nodal displacements and slopes,        ⁄   of a 2 node, 2 

DOF per node element. An even better assumed shape could also satisfy the load 

(natural) boundary conditions.   

 Evaluating the mathematical coefficients    in terms of the physical nodal 

quantities gives the solution of the coefficients as functions of the local element 

coordinate   (     ) in the form of shape functions         

         3.25 

The Hermite shape functions    are cubic polynomials in   [50] 

               
     (        )  
            
     (      )   

3.26 
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Using equations 3.25 and 3.26, the strain energy and kinetic energy can then be 

respectively expressed as  

 
         

 

 
  

 [∫   (       )  
  

 

]    3.27 
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Using a transformation from y to η the resulting classic uniform beam element 

stiffness and mass matrices are given as [9] 
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3.29 
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3.30 

The torsion element is formulated in a similar manner assuming linear shape 

functions to account for the nodal torsional displacements 

         
    ,                 where                  
 

3.31 

The shape functions only need be once differentiable in the equations of motion   
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The explicit uniform torsion stiffness and mass element matrices are given as [9] 

      

  
[

   
   

],                       
    

[
  
  

]  
3.34 

Here, GJ is the torsional rigidity,    is the polar moment of inertia and    is the cross 

sectional area reference dimension based on the aerodynamic mean chord length. 

The reference area is required to maintain consistent units of energy.  

The Hermite cubic polynomial bending element and linear torsion element 

are commonly used in many structural analyses especially in beam-like 

representations of aeroelastic structures. Three-dimensional aeroelastic behavior is 

replicated by a combination of bending elements to account for the bending in 

plunge and sway, a torsion element to account for pitch and an axial extension 

element. The result is 12x12 element stiffness and mass matrices. However, the 

axial extension is often negligible without thermal considerations and the bending 

sway in the perpendicular direction is often negligible due to low drag force relative 

to lift, and high sway stiffness. Additionally, the characteristic vibrational behavior 

of these neglected modes is often not manifest in experimental behavior [31]. So the 

remaining modes of interest result in the combined 6x6 modified beam element 

shown in  

Figure 3.2. The explicit combination of the plunge bending and torsion 

elements is given in classical form as  
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3.36 

The mass matrix above only accounts for the kinetic energy of a specific beam 

structure moving in pure plunge and pitch.   

3.3.2. Higher order beam finite element  

The two node Hermite cubic beam bending element gives exact nodal 

displacements and slopes, but poor internal loading representation since the 

moment and shear are dependent on the second and third derivatives of the 

solution, respectively. The cubic polynomial can be raised to a fifth order or quintic 

polynomial to accurately capture the internal loading and the displacements with 

fewer elements.  Thus, the quintic interpolation essentially gives the exact solution 

for distributed loading on a cantilever beam. Additionally, the linear torsion element 

is only accurate when neglecting shear effects. The shear can be represented by a 

warping component of twist that is dependent on the second derivative of the linear 

elastic torsion. Thus, a cubic torsion element is desirable.  
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 The quintic beam element can be formulated for a three node element in 

terms of the element deflection and slope. The Hermite quintic polynomial shape 

functions in   are then given as [50] 

                            
      (                   )  
                    
      (                   ) 
                       
      (                ) 
 

3.37 

The explicit quintic element stiffness and mass matrices are given in the appendix 

for reference.  

3.4. Characteristic Modeling  

 The assembly of the stiffness and mass elements into the respective system 

structural stiffness matrix E and system inertia matrix A gives the total system 

behavior with respect to the discrete coordinates of the system. The characteristic 

dynamic behavior can then be modeled using [46] 

 [     ]     
3.38 

where the eigenvalue    represents the natural frequency and the eigenvector    

represents an arbitrary displacement profile or mode of the discrete coordinates. 

The solution of the equation is achieved by setting the determinate of the brackets 

equal to zero. The resulting nontrivial solution is a vector of real eigenvalues of 

length n that describe the natural vibrations frequencies of the system. The 

contribution of the DOFs of interest can then be investigated by plotting the mode 
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shapes of each DOF with respect to the other DOF through relative scaling scheme, 

such as maximum unit displacement used herein.   

3.5. Free Vibration of Coupled Multiple Degree of Freedom 

Systems 

The free vibration analysis of high aspect ratio wing structures is a natural 

application of the modified beam element where the wing structure is equated to a 

long slender beam capable of bending and torsion. For many classical beam cross 

sections, such as I-beams or hollow square beams the cross section is doubly 

symmetric about both horizontal and vertical axes. This double symmetry leads to 

an uncoupling of bending and torsional motion. However, even in simple classical 

wing structures, such as NACA 4-series airfoils, the cross section has only single 

symmetry or no symmetry in the case of NACA 2412 airfoil. This loss of cross-

sectional symmetry leads to a coupling effect of bending and torsional motion due to 

an offset of the center of gravity and the center of shear some distance   referred to 

as inertial eccentricity. The resulting coupled equations of motion are dynamically 

coupled but elastically uncoupled. The coupled elastic potential energy including the 

effects of the geometric warping    is given as [25] 
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and the coupled kinetic energy is given as 
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3.40 

The terms    and    are the mass density and reference area respectively, 

and they are given as such to maintain consistent energy formulation. An alternative 

formulation as mentioned in section 3.3.1 is the mass per unit length, μ. Both 

formulations are commonly used in classical analysis.  

3.5.1. Natural frequency and mode shape validation 

The free vibration natural frequencies and mode shapes of inertial eccentric 

beams are the precursor to an inclusion of aerodynamic effects. Accurate application 

of the fundamental or lower structural modes requires a verification of the 

frequencies and mode shapes. Thus the coupled vibration FEM model is compared 

to a published case study listed in Table 3.1. The classic cubic interpolation is 

consistently used for beam bending and torsion and the results are compared to the 

higher order quintic interpolation to show convergence on the excepted values.   

Table 3.1 – Case study material and geometry data 

Model 
EI 

[Nm2] 
GJ 

[Nm2] 
    

[kg/m3] 
    

[m2] 
    
[m] 

    
[m4] 

L  

[m] 

Cantilever 
Wing[39, 51]  

9.75 x 
106 

9.88 x 
105 

42.8 0.836 
(=b2) 

0.18 0.202 6 

 

The cantilever square wing example presented by Banerjee [51] is the 

classical model used for the analytical prediction of flutter characteristics [39]. The 
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first two fundamental frequencies are most important in aeroelastic analysis since 

the lowest modes are typically less damped and more susceptible to physical 

aerodynamic effects. The first two fundamental frequencies are 49.6rad/s and 

97.0rad/s which agree completely with the FEM mode shape plots in Figure 3.3. The 

first plot in the figure shows the use of one element with cubic interpolation and the 

second uses five elements. The one element case does not produce the exact 

fundamental frequencies and mode shapes, but the five element case does 

essentially produce the exact solution after a monotonic convergence with the 

inclusion of more elements. The cubic interpolation does essentially converge to the 

exact result with the use of only two elements, but five elements are used to 

maintain consistency with the later aeroelastic formulation, which requires five 

cubic elements for convergence.  

The quintic interpolation of the example data with three nodes per element is 

shown in Figure 3.4. The fundamental frequencies and mode shapes are essentially 

achieved with only one quintic element, which is a clear advantage over the cubic 

interpolation. The behavior of the mode shape plots for each respective mode is 

indicative of the individual contributions of the uncoupled motions. The first mode 

at 49.6 rad/s is dominated by the bending motion as shown by the relative scaling of 

the maximum characteristic displacement at the tip (right side). The second mode is 

dominated by torsion for the same reason. Thus, the two lower modes of this model 

are the primary suspects for consideration of aeroelastic influence since a 

combination of bending and torsion in phase results in dynamic flutter.  
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Figure 3.3 - Coupled bending and torsion fundamental natural frequencies and 

mode shapes of case study data – Cubic interpolation FEM, 2 nodes per 

element, 1 and 5 elements  
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Figure 3.4 – Coupled bending and torsion fundamental natural frequencies 

and mode shapes of case study data – Quintic interpolation FEM, 3 nodes, 1 

element 
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Chapter 4 

Static Aeroelasticity 

Static aeroelasticity is the study of the interaction of aerodynamic loads and 

elastic flexibility independent of inertial time varying loads. The lifting load model of 

steady aerodynamics is used since acceleration based forces are eliminated from the 

equations of motion, and the loading is only a function of the local incidence of the 

lifting surface to the airstream [20]. The loading is assumed to cause small elastic 

deformation which changes the lifting characteristics of the surface enough to alter 

the loading until an equilibrium condition is reached. If the aerodynamic loading 

overcomes the elastic restoring moment before equilibrium is reached at a cruise 

condition, the structure experiences unbounded displacement in a phenomenon 

known as divergence [5].  

The structural stiffness is much more important than the strength in 

aeroelastic considerations, and the torsional stiffness is the primary divergence 

mode [2, 7]. The static aeroelastic models used will incorporate the flexible torsion 
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of a structure combined with the loading distribution of a lifting surface. The 

geometry configurations of the lifting surface and structural model, such as varied 

sweep and taper, also significantly affect the lifting and stability characteristics of 

the model and will be considered. Static aeroelasticity is a component of full 

dynamic aeroelasticity, and is a logical precursor to a full appreciation of dynamic 

aeroelasticity.  

4.1. Modeling and Prediction 

4.1.1. Model nomenclature  

 

Figure 4.1 – 2 DOF bending and torsion airfoil model 

A full aeroelastic model includes aerodynamic, inertial and structural 

features, but the inertial components are only mentioned and not considered in 

static aeroelastic analysis. Thus, an aerodynamic load and elastic deformation model 

will be used to study bending and twisting effects. An aerodynamic fundamentals 

model with pitch and plunge DOFs allows for sufficient analysis of the relationship 

between aero loading due to lift and drag and the resulting deformation [52].  
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Determination of the terminology of the model is critical to proper 

application of the model dynamics. The standard reference dimension of airfoil 

models is the measure from the leading edge to the trailing edge called the chord,  . 

However, the half chord,    is used interchangeably as a reference dimension. The 

point origin of many airfoil models is the leading edge, but the origin used for the 

two DOF model shown in Figure 4.1 is the elastic shear center (SC) measured a 

distance    from the mid chord. A force applied at this point will cause pure plunge 

and no pitch, and a moment will cause pure pitch and no plunge. This reference and 

origin configuration is typical of many classical aeroelastic derivations[5–7].  

The point origin is used to gauge the displacement of the structure. The 

plunge term is represented by    measured positive down from the SC origin. The 

pitch term is represented by    measured positive leading edge up about the SC 

origin. The pitch term or angle of attack is combination of the rigid body incidence 

and the elastic torsion of the airfoil about the SC [3] 

         
4.1 

The appropriate extension of the SC to a three-dimensional wing of span,  , is 

the line of shear centers called the flexural axis (FA). This is the general line of points 

where an applied load causes pure plunge or pitch. The weight of the structure acts 

about the center of gravity (CG) usually located at the mid chord, with the mass axis 

(MA) representing the wing equivalent. The wing axis representations are shown in  

Figure 3.2. If the MA and FA are offset, the bending and torsion modes are 

coupled in the inertia terms. 
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Figure 4.2 – Pressure distribution and reference points on an airfoil surface 

The lift distribution over an airfoil is accurately described by a non-uniform 

chordwise pressure distribution, and the effective center of pressure (CoP) is the 

location where the pressure distribution can be idealized as a force vector. This 

location varies with a change in the pressure in distribution, so it is not used in this 

analysis, see Figure 4.2. Alternatively, the aerodynamic center (AC) is the point on 

the airfoil where pitching moment coefficient does not change with flight conditions 

and it is measured a distance    from the SC termed aerodynamic eccentricity. For 

symmetric thin airfoils, this point is exactly the quarter chord ( 

 
), and general airfoil 

shapes differ only slightly. The orthogonal lift and drag vectors act about the AC and 

vary in magnitude depending on the flight conditions, but the moment couple is 

constant or zero for thin symmetric airfoils. The lift then creates a moment about 
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the SC with a moment arm of   . The extension to three-dimensional wings is the 

axis of aerodynamic centers (AA).  Another significant reference is the control point 

(CP) located at the three-quarter chord (  

 
), which satisfies the boundary of flow 

tangency necessary for the inviscid flow assumption [20]. 

4.2. Steady Aerodynamics  

The loading of a lifting surface is the primary contribution of the 

aerodynamics to the ternary flutter problem, so a formulation of predictable loading 

is important. The steady aerodynamic formulation of loading assumes that the 

velocity of the inviscid and incompressible flow field around a lifting surface is 

constant in time; thus, this formulation is appropriate for a static analysis.  

The forces of the steady flow can be expressed in terms of dimensionless 

quantities. The dynamic pressure  

 
  

 

 
     

4.2 

relates the atmospheric density,  , and flow velocity,  , to the pressure dimensional 

quantity,  . The dimensionless loading coefficients are then expressed as spanwise 

external forcing over the dynamic pressure and a reference dimension in the form 

    
    

        
                    

               

         
. 

4.3 

The drag force is not considered since the chordwise bending or sway is small 

compared to the spanwise bending due to high chordwise stiffness.   



www.manaraa.com

 42 

 Considering only attached sub stall flow, the loading response is linearly 

proportional to the incidence angle and is known as the airfoil lift curve slope 

 
   

   

  
  4.4 

which is idealized as    for thin, symmetric two-dimensional airfoils in 

incompressible flow [53, 54].  For a finite three-dimensional wing, the lifting load 

can be expressed as the total loading of each two-dimensional airfoil strip over the 

span [5] in the form of external forcing similar to equation 3.7 

 
        ∫     ( )  

    

 
4.5 

 
        ∫       ( )   

    

 
4.6 

In general, the chord and lift curve slope can vary with the span as a function of y so 

the terms are retained inside the spanwise integral. For a rectangular untapered 

wing, the terms are constant across the span.  

The strip theory of airfoils, expressed for a continuous wing in equations 4.5 

and 4.6, models the finite wing as a series of spanwise strips with lift proportional to 

the local incidence of the strip. This theory is well suited for discretization and 

direct coupling to a finite element modified beam structural model, so it will be the 

primary focus of the loading calculation.  
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4.2.1. Strip theory discretization   

 The strip theory can be used in conjunction with a FEM beam model in a 

discrete structure to calculate the loading on each individual beam element. The 

discrete representation of the loading per individual strip is of the form [5] 

          (   )     
4.7 

            (   )     
4.8 

where the subscript    denotes the individual aerodynamic element of interest out 

of     strips. The density of the aerodynamic elements     can differ from the 

density of the structural elements   , but the densities will be consistent for an 

application of strip theory to beams elements. The term      is the width of the strip 

with the spanwise reference in the center of the strip. The lift curve slope is 

potentially modified by a change in atmospheric flow conditions most notably the 

compressibility of the flow at high subsonic Mach (  ) number [54] 

        
        

              ⁄       
4.9 

The lift curve slope is then given by the Prandtl-Glauert rule valid in the range 

specified above 

     
  

√     
  

4.10 

The modified, compressible lift curve slope is a suitable replacement for the ideal 

value of airfoils when considering the loading on real wing structures. The total 

spanwise loading is then given by the sum of the individual aerodynamic elements 
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 4.11 

4.3. Static Divergence  

Divergence is the phenomenon of unbounded deflection caused by 

insufficient structural stiffness. Wing torsional divergence is the most common 

instability, so a flexible torsional 2 DOF wing model will be developed to 

demonstrate the driver of the instability.  

4.3.1. SDOF Model  

The SDOF case of pitch only deflection is a simple case used to demonstrate 

the wing divergence condition. Consider a two-dimensional airfoil model with a 

torsion spring    located at the SC.  The plunge DOF is eliminated leaving the 

following neutral stability condition with applied pitching moment 

            (    )  
4.12 

Rearranging for the elastic torsion   gives a simple representation of the aeroelastic 

equation in the form  

 (         )             4.13 

The addition of the structural and aerodynamic terms on the left hand side of the 

equation is the effective aeroelastic stiffness, which decreases as the dynamic 

pressure increases. The effective stiffness can be represented as the rate of change 
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of the total moment about the shear center with respect to the elastic torsional angle 

θ [10] 

   

  
                        4.14 

Solving for the elastic torsion gives a closed form equation in terms of the rigid 

airfoil incidence  

 
  

       

(          )
    4.15 

 The airfoil diverges when the denominator of equation 4.15 goes to zero. The 

flight condition that satisfies the divergence criteria is called the divergence dynamic 

pressure 

 
   

  

      
  

4.16 

The neutral stability or divergence is a special case only considering the deflection 

dependent external aero forces and the internal structural forces. This special case 

is self-equilibrating and non-unique, thus it is uncontrollable [55]. A plot of non-

dimensional elastic torsional divergence is shown in Figure 4.3 as function of the 

flight condition up to divergence [3]. The elastic torsion equals the rigid incidence at 

half the divergence dynamic pressure, effectively doubling the total pitch angle. The 

torsion then grows exponentially as the flight condition approaches divergence.  
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 Figure 4.3 –Torsional divergence of SDOF spring model 

4.3.2. FEM model  

The aeroelastic motion of a MDOF body can be idealized using differential 

equations and subsequently modeled using FE analysis techniques.  The torsion only 

motion can be modeled using an ideal square wing with constant aerodynamic 

eccentricity. The aerodynamic loads act along the AA, which are offset from the FA. 

Only the torsion is modeled, but the wing will also bend under the application of an 

aerodynamic load.  

The wing twist deflection is characterized by a linear assumed displacement. 

Considering a consistent discrete representation of the wing strip and torsion 

structure with          nodes per strip/element, the interpolation functions 

are given in equation 3.31 and the torsion element vector    can be replaced by the 

generalized coordinate vector  . The explicit structural stiffness element matrix is 
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given in equation 3.34, and the aeroelastic strip length     replaces the structural 

element length   .  

 The spanwise couple due to the lift offset from the FA is given by equation 

4.8. The incremental work done by the couple over an aerodynamic element is the 

integral of the spanwise force per equation 3.7 

 

     ∫        (      )

   

 

 (   )    
4.17 

Rearranging the loading term gives the aerodynamic element matrix integral  

 

     [∫        (   
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  ]    
4.18 

Using Lagrange’s equations gives the explicit aeroelastic formulation for a 2 node 

aeroelastic torsion model  
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4.19 

 The aerodynamic stiffness term C on the far right hand side of the equation is 

grouped with the structural stiffness on the left hand side of the equation. The fixed 

root boundary condition is enforced on the first generalized coordinate to give an 

explicit formulation of the remaining generalized coordinates in terms of the rigid 

incidence. The second generalized coordinate in the this case corresponds to the 

outboard tip torsional displacement   
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    4.20 

which is identical to the assumed shaped solution given by Wright [5]. The 

divergence dynamic pressure is derived from the neutral stability as before 

 
   

   

         
 
  

4.21 

 The resulting lift distribution is the primary focus of an aircraft design 

engineer. At the divergence limit, the loading tends to infinity, but structural failure 

will first occur based on the structural integrity. A common aerodynamic reference 

for the structural load limit is a V-n diagram, which has a  ̅ limit at some high 

dynamic pressure as shown on the right hand side of Figure 4.4.  This limit is 

typically an aerothermoelastic limit, but when temperature effects are neglected the 

limit reduces to an aeroelastic limit, which is predictable by static analysis [3, 56].  

 

 

Figure 4.4 – V-n loading limit diagram example [54] 
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Chapter 5 

Dynamic Aeroelasticity  

The problem of flutter is extremely important in the design and development 

of aircraft structures. Many stiffness based criteria in airframes are based on flutter 

requirements [3], which also determine airworthiness and maintenance schedules 

[56]. Considering Figure 1.1, the structural dynamic characteristics of flight vehicles 

covered in Chapter 3 coupled with the aeroelastic loading and effects covered in 

Chapter 4 produce a unique phenomenon described by dynamic aeroelasticity. In 

static aeroelastic analysis, the aerodynamic surfaces are assumed to be in a steady 

condition so the forces acting on the surfaces are constant in time leading to 

divergence criteria.  The inclusion of dynamic effects requires a consideration of the 

outcome of changing circulation and wake acting upon a moving airfoil described as 

unsteady effects [5]. The inclusion of unsteady aerodynamic effects leads to a 
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meaningful representation of the characteristics of aeroelastic flutter, but presents a 

complicated analysis even with linearized aerodynamics and clean lifting surfaces.   

There are many dynamic aeroelastic phenomena that could be considered 

but flutter is arguably the most important of all the aeroelastic phenomena and is 

the most difficult to predict [6]. It is an unstable self-excited vibration in which the 

structure extracts energy from the air stream and often results in catastrophic 

structural failure. Lifting surface flutter is most often encountered in aircraft 

systems and is the primary focus of aeroelastic design. Classic binary flutter occurs 

on lifting surfaces when the motion of two modes of vibration couple unfavorably 

[5] as shown in Figure 2.2. The bending and torsion model of an airfoil strip is well 

suited to account for binary flutter, but there are cases when more than two modes 

can cause flutter in wing elastic structures so multimodal mathematical models are 

employed in industry prediction techniques [15].  

In this chapter, a binary flutter 2 DOF model is developed with unsteady strip 

theory aerodynamics and elastic bending and torsional structural dynamics. The 

mathematical representation of the analysis is a linear set of ordinary differential 

equations with aerodynamic external forcing linearly proportional to the system 

response. The equations of motion are used in an eigenvalue problem, and the 

stability characteristics are investigated in terms of the eigenvalues. The 2 DOF case 

is then expanded to a MDOF FEM case considering only lowest modal interactions.  
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5.1. Unsteady Aerodynamics 

 The derivation of lifting loads with the strip theory of aerodynamics was 

covered in Chapter 4 for two-dimensional inviscid, compressible flow over a thin 

airfoil undergoing small displacement. Although there are obvious deficiencies with 

a linearized, two-dimensional theory the most significant drawback is that it 

neglects unsteady effects critical to accurate flutter analysis. The development of 

unsteady aerodynamic theories is a classical and ongoing endeavor, which is 

simplified when one assumed harmonic motion a priori [3]. The harmonic 

assumption then naturally leads to a frequency domain analysis of unsteady airfoil 

response in lieu of a time domain analysis since the motion at the stability boundary 

modeled in the frequency domain is of more interest.  

5.1.1. Quasi-steady aerodynamics 

The steady aerodynamic models employed in Chapter 4 relied on the 

assumption of an airfoil or wing fixed relative to the air flow with the resulting 

forces and moments remaining constant in time. In general, the forces and moments 

vary with time as the airfoil moves. One simple approach for the estimation of 

general aeronautical forcing worth mentioning is the idea of quasi-steady 

aerodynamics [5].  The basic assumption is that the time dependent motion of the 

airfoil behaves with characteristics equivalent to a steady moving airfoil at that 

instant of time. The result is an instantaneous change in loading when the flight 

conditions, such as pitch and plunge, are changed.  However, the lack of frequency 
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dependence means that the response is exactly in phase with the loading, when 

actually the perturbed response lags steady-state value.  

One method for modeling the response lag with quasi-steady aerodynamic 

theory is Wagner’s function, which models the lag in response due to indicial forcing 

as a function of non-dimensional time     
 ⁄ . Wagner’s function is usually 

approximated for incompressible flow as [20] 

 
 ( )    

 

   
  

5.1 

and the change in lift per unit span of an airfoil is then expressed as  

 
   

 

 
   (  )(  )   ( )  5.2 

The plot in Figure 5.1 shows the time domain lag of the lift force calculated 

using equations 5.1 and 5.2  compared to the pure quasi-steady force. The quasi-

steady lifting force occurs instantly once the wind is turned on, but the unsteady 

Wagner forcing starts at half the quasi-steady value and lags nearly 15 semi-chords 

before reaching a steady state value. The combined effect of this lagging in an 

oscillating airfoil can be expressed as a convolution of each change in flight 

condition if the time domain solution is desired. The quasi-steady aero model is a 

traditional technique (see Table 2.1) for aeroelastic modeling, but has obvious 

drawbacks. The quasi-steady lift model is also typically standard for undergraduate 

aerodynamics texts [4, 53, 54]. 
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Figure 5.1 – Wagner function and the effect of sudden change in incidence  

5.1.2. Harmonic Motion  

The harmonic motion assumption is a much more powerful tool in 

aeroelastic analysis that can capture frequency dependent effects allowing for 

proper flutter stability modeling [8]. As the frequency of the airfoil motion changes 

the phase lag and magnitude of the response also change. The response can be 

formulated as a function of the dimensionless reduced frequency parameter [6, 20], 

 
  

  

 
  5.3 

This is the number of circular oscillations of the airfoil in the time taken for the flow 

to cross one semi-chord b of the airfoil. The reduced frequency parameter is similar 

to the Strouhal number of fluid mechanics used to measure the vortex shedding of 

oscillating bodies.  
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Figure 5.2 – Vortex generation of a moving airfoil [57] 

 In general, the loading on an oscillating airfoil is due to the periodic shedding 

of trailing edge vortices. As shown in Figure 5.2, the airfoil incidence and the fluid 

motion causes a trailing or shed vortex to form at the sharp trailing edge. As the shed 

vortex moves away from the airfoil to a steady condition, a bounded vortex forms 

about the AC to counterbalance the shed vortex in accordance with Kelvin’s 

circulation theorem [20]. The strength of the bound vortex is the algebraic sum of 

the shed vortices for all past time history. However, accurate tracking of all shed 

vortices is difficult especially when general airfoil motion is considered. A simple 

alternative is a harmonic motion assumption. So the application of the reduced 

frequency appropriately idealizes the vortex shedding as a function of the circular 

oscillation.  

The flow around a harmonically oscillating airflow can be divided into two 

parts: the circulatory and noncirculatory effects [20]. The circulatory terms are 
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dependent on the vorticity of the flow field as mentioned above and tend to 

dominate the load calculation for oscillating airfoils. The noncirculatory terms 

develop instantaneously and are not dependent on the circulation. These terms 

result from the mass of air moving with the oscillating airfoil creating a reaction to 

the motion.  

The harmonic assumption used in this study assumes developed pure 

harmonic motion where the transient effects of vortex initialization are neglected. 

This is a restricted, but applicable and classical technique for aeroelastic 

determination [30]. One significant drawback in using the harmonic assumption is 

that dependent aerodynamic theories can only predict the flutter speed and 

frequency or stability boundary. By definition, the harmonic time dependence of a 

system corresponds to the stability boundary where the system becomes critically 

damped [3]. Therefore, the modal damping and frequencies outside the flutter 

condition are estimated with techniques discussed in section 5.2.  

5.1.3. Theodorsen’s function  

Theodorsen’s function is used to model the changes in amplitude and phase of 

the unsteady forcing of harmonically oscillating airfoils [30]. The function is 

essentially a Fourier transform of the Wagner function, and it acts as a frequency 

domain filter for oscillating motion input to give a reduced frequency dependent 

output [5].  
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 ( )   ( )    ( )  

  (  )

  (  )    (  )
 

5.4 

The function is a complex quantity with real  ( ) and imaginary  ( ) parts in order 

to model the phase and amplitude shifting. The   (  ) and   (  ) terms are 

modified Bessel functions of the second kind [20].  

 

 Figure 5.3 – Theodorsen’s function for oscillating airfoil 

 The merit of Theodorsen’s function is that it allows for accurate prediction of 

wake vortex shedding behavior for harmonically oscillating airfoils, which is critical 

to accurate unsteady lift calculation. Since the function is only applicable in the 

frequency domain, it a can only be used for stability analysis unless an inverse 

Fourier transform is applied to the function to convert it to the time domain. A 

representation of real and imaginary parts of Theodorsen’s function is shown in 

Figure 5.3 as function of the reduced frequency [30]; this plot has comparable 

behavior to the Wagner function plot in Figure 5.1.  
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5.1.4. Unsteady aerodynamic derivatives  

The linearized aerodynamic theory employed in this stability flutter analysis 

can be developed for an airfoil two-dimensional section to illustrate the application 

of unsteady effects. Considering the same symmetric airfoil section (     ) from 

Chapter 4 shown in Figure 4.1, the airfoil undergoes harmonic forcing and the linear 

response is of the form given in equation 3.1. The physical oscillatory response is 

then expressed for each coordinate respectively as 

      
                      

             
5.5 

where the angle of attack is only a function of the elastic torsion as in equation 4.1. If 

the SC or FA is taken as the reference for physical displacement and the mid chord is 

taken as the geometric reference for the SC located a distance ab aft of the mid 

chord, the lift and moment equation per unit span are given[8, 20] as  
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5.7 

 These equations are derived by considering the noncirculatory and 

circulatory components of the flow field around the airfoil [5]. The noncirculatory 

terms listed first in each equation are dependent on the apparent moment of inertia 

or mass of the flow multiplied by the respective angular acceleration or vertical 

acceleration. The circular terms, which are dependent on Theodorsen’s function, 
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account for the strength of the circulating vortex about the airfoil CP (¾ chord), and 

the response lag of the oscillating airfoil.  

 If the complex form of Theodorsen’s function is applied along with a complex 

representation of the response displacement, equations 5.6 and 5.7 become 
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5.9 

The equations can be linearized into the same form as the static lift equation used in 

Chapter 4, 

 
      

   

  
   5.10 

However, the slope of the lift curve,  
   

  
  in the unsteady case is not just a function of 

the pitch incidence; rather it is function of non-dimensional displacement and 

velocity for plunge and pitch: 
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,      etc.  
5.11 

The resulting equations for lift and moment per unit span are written in terms of the 

oscillatory aeroelastic derivatives [30],  
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5.13 

which are given for the pitch and plunge DOF as shown in Table 5.1.  

Table 5.1 – Oscillatory aeroelastic derivatives [5] 

Derivatives Unsteady – complex Theodorsen’s values 
Quasi-steady 

limit 
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*Note: there is a singularity in the quasi-steady case as     so the  ̇ terms cannot 
appear in quasi-steady analysis 
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These aerodynamic loading terms can be rewritten in matrix form when the 

oscillatory response in equation 5.5 is substituted back into the loading giving [5] 

  {
  
  

}  [    {
 ̇
 ̇
}       {

 
 
}]    

   [
   ̇     ̇

    ̇     ̇

],          [
     

       
]  

5.14 

The    matrix is referred to as the binary aerodynamic damping matrix since its 

terms are proportional to the coordinate velocities. The    matrix is referred to as 

the binary aerodynamic stiffness matrix since its terms are proportional to the 

coordinate displacements. The 2x2 binary matrices only apply to the 2 DOF case 

typically investigated [5]. However, even in the in 2 DOF case, both matrices are 

nonsymmetric, which leads to the aeroelastic instability condition. The binary 

aeroelastic matrices    and    must be expanded for a FEM formulation to n x n size 

matrices, where n is the number of DOFs of the structural response element 

matrices. Thus, the structural response matrices and aerodynamic loading matrices 

are of the same order.  

 Applying strip theory aerodynamics, the lift and moment act on the elastic 

system as spanwise, generalized, unsteady forces where the incremental work 

energy formulation is in the form of the spanwise contribution in equation 3.7 

 

     ∫           

   

 

  
5.15 
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The total load formulation of L and M in equations 5.12-5.14 is converted to the strip 

representation    and    when applying strip theory, by assuming distributed 

loading over an infinitesimal distance    instead of a unit span as in equations 5.6-

5.14: 
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5.16 
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5.17 

In matrix form, the work done by the lifting load on a strip element is given as 

 

    ∫ {
  
 

}
 

{
  
  

}

   

 

 
5.18 

The plunge displacement   is negative because the bending displacement is positive 

nose down, which is opposite the convention for positive lift up.   

 The work energy can be written in terms of an assumed element 

interpolation function   in the form 
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5.19 

The interpolation function   can be independent for each mode of interest: 
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5.20 
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Substituting the binary matrix formulation of equation 5.14 and the appropriate 

displacement interpolation gives  
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5.21 

The full aerodynamic damping and stiffness matrices are then given as 
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5.22 
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5.23 

 The sign of the aerodynamic matrices change once they are represented on the left 

hand side of the equations of motion instead of the right hand side for generalized 

forcing. The n x n aerodynamic matrix equations above, in conjunction with the 

structural n x n matrices, give the full ternary equations of motion, which are 

classically represented as a homogeneous stability problem [8, 20] in the form 

   ̈  (     ) ̇  (      )     
5.24 

where       are the structural inertia, structural damping, and structural stiffness 

respectively, and   are the generalized coordinates. The   and   matrices only 

apply for a specific reduced frequency of interest unlike the structural equations 

which are typically constant for all linear considerations. Thus, a frequency 
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matching or balancing method is necessary to determine the displacement 

dependent aerodynamic components that in turn determine the displacement 

stability characteristics of the ternary system. Since the equation of motion is 

homogeneous with a zero right hand side, it is not possible to determine the 

absolute values of the modal response. Instead, an eigensolution approach is 

necessary.  

5.2. Eigenvalue and Frequency Matching Solution Methods  

In order to properly model aeroelastic systems, unsteady, reduced frequency 

dependent aerodynamics must be included in the analysis. The characteristic 

determinate eigensolution of equation 5.24 can be solved directly when the   and   

matrices are known. However, the matrices cannot be formed until the reduced 

frequency is known, and the reduced frequency is dependent on the eigensolution. 

Thus, there is no direct method to solve the equations of motion and an iterative 

frequency matching is typically used.  

The two techniques described in this section rely on the harmonic response 

assumption, which can predict the stability boundary but not the subcritical 

behavior. Thus the methods should accurately predict the flutter speed and 

frequency, but will inherently predict different subcritical behavior. However, the 

stability boundary information is sufficient to show the mechanism of flutter in the 

form of negative modal damping, which allows the engineer to make design 

variations to prevent the stability altogether. The “baseline system” used in this 
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section to illustrate and verify the frequency matching techniques is given by Wright 

[5] for an elastic spring, binary, airfoil with simplified unsteady flow 

approximations. The baseline data is not printed here because it does not apply to 

the FEM formulation.  

5.2.1. The ‘k’ method 

A practical observation of a harmonically oscillating airfoil shows that the 

total energy removed per cycle or the total damping is a function of the square of the 

amplitude and is independent of the frequency of oscillation [3]. Thus, a complex 

stiffness or hysteretic damping as mentioned in section 3.2.2.2 is characteristic of 

the system. If the structural damping is incorporated in the formation of the 

equations of motion as a function of the unknown structural damping coefficient,  ,  

       
5.25 

then harmonic equation of motion is of the form [5] 

 
[    (

 

 
)   (

 

 
)
 

  
    

  
 ]      

5.26 

This equation is a generalized eigenvalue problem, 
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The coupled oscillating frequency and structural damping of each respective DOF is 

based on the corresponding complex eigenvalue 

            
 

√  ( ̃ )
                   

  ( ̃ )

  ( ̃ )
. 

5.28 

The   term is the equivalent damping ratio at the natural frequency. The k method is 

implemented in a step-by-step process outlined below [5]: 

1. Choose a reduced frequency (k) of interest, usually near zero. 
2. Calculate the corresponding aerodynamic stiffness   and damping 

  matricies. 
3. Solve the Eigen problem of equation 5.27 for the complex eigenvalues. 
4. Determine the corresponding frequency and damping from equation 5.28. 
5. Relate the oscillating frequency and the selected reduced frequency from 

step 1 to the forward velocity based on the definition of the reduced 
frequency from equation 5.3. 

6. Repeat steps 1-5 until the range of k values has been investigated.  
7. Assemble the calculated values of frequency with respect to velocity for each 

respective mode by ploting the calucated frequnecy with respect to its 
corresponding velocity in a “shooting method” from the FD origin. An 
example assembly is shown in Figure 5.4 for 3 separate reduced frequencies 
and 2 modes of interst  
 

A 2 DOF sample for three values of reduced frequency is shown in Figure 5.4, 

which is a plot of the modal frequencies over the velocities of interest known as    

plot. For each reduced frequency k, there are two complex eigenvalues 

corresponding to each modal frequency and damping value. The trend of the system 

and the mechanism of flutter can then be predicted with a Vg plot, which relates the 

modal damping ratio g from equation 5.28 as a function of the respective velocity. 

However, the equivalent damping ratio   is used instead to maintain consistency 

with the ‘p-k’ formulation.  An example Vg plot is shown in Figure 5.5 for the same 
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two modes of interest as in Figure 5.4. The damping ratios of each mode of interest 

start at zero percent critical when the wind is off and the flow velocity is zero. As the 

flow velocity increases the reduced frequency definition in equation 5.3 requires 

that the modal oscillation frequency compensate for a constant reduced frequency. 

Thus, the individual modal frequencies tend to coalesce to a common flutter 

frequency as the velocity increases.  

 

Figure 5.4 – Example ‘k’ method    frequnecy plot of the basline system for 

lines of constant reduced frequency ------ and 2 modes of interest  
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Figure 5.5 – Example ‘k’ method Vg plot with 2 modes of interest 

Assuming the convention that work into a system is negative; the aeroelastic 

system draws energy from the airstream as the phasing of the torsion and bending 

coalesce shown in Figure 5.6. The energy input into the system causes the structure 

to oscillate at the coalescence frequency, thus simultaneously exciting both modes 

resulting in flutter. So the flutter velocity    is the point when the damping of a 

single mode crosses the zero damping line from positive modal damping to negative 

modal damping. In Figure 5.5,            where the damping is critical. The 

corresponding dimensionless reduced frequency is        giving a flutter 

frequency of        Hz with a unit semi-span. 
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Figure 5.6 – Pitch and plung phasing shown near the same frequency to 

produce coalescence and instability [10] 

 

 The addition of the hysteretic damping in the ‘k’ method eigensolution is 

artificial in that the total damping is designed to give a zero value at the critical 

condition [7]. So the non-critical behavior is suspect and can lead to incorrect 

damping trends. A more direct iteration scheme called the ‘p-k’ method relies on an 

experimental determination of the strucutral damping, and iterates directly over a 

span of velocities instead of shooting from the origin when iterating over a span of 

reduced frequencies. 

5.2.2. The ‘p-k’ method 

The k method is a convenient formulation for prediction of the critical flutter 

speed, but it is a mathematically improper formulation since it imposes artificial 

structural damping. A proportional damping p-k method demonstrated by Hassig 
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[33] better approximates the true damping solution of lightly damped lower modes 

by incorporating proportional damping, and it compares accurately to general 

transient loading at small deflections. The aeroelastic equation 5.24 must first be 

reduced to a first order form by considering the trivial equation  

   ̇    ̇     
5.29 

where   is the identity matrix. Combined with equation 5.24 in partitioned or state-

space form gives the formulation 
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5.30 

Or the equation can be rewritten in first order form for a classical eigensolution  
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5.31 

Assuming harmonic motion, the eigensolution is in the form  

 (   ̃  ) ̃    
5.32 

 The eigenvalues of the system matrix   are complex conjugate pairs, and the 

oscillatory frequency and damping are functions of the real and imaginary 

components [58], 

 
 ̃          √    

 ,             
5.33 

The corresponding eigenvectors appear in complex conjugate columns where the 

upper half of the eigenvectors correspond to the complex mode shapes  



www.manaraa.com

 70 
 

 ̃  {
  

   
},             

The resulting modal frequencies and damping can be calculated from the complex 

eigenvalues with the functions  
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. 5.34 

The p-k method is implemented in an iterative manner described below [5]: 

1. Select an airspeed of interest. 
2. Select a mode of interest from among the degrees of freedom. 
3. Guess the initial oscillation frequency for the mode using the wind off natural 

frequency or the previous airspeed. 
4. Calculate the reduced frequency for this condition from equation 5.3. 
5. Calculate the corresponding aerodynamic stiffness   and damping 

  matricies. 
6. Solve the Eigen problem of equation 5.31 for the complex eigenvalues. 
7. Calculate the oscillatory frequencies of the system using the eigenvalue of the 

real   matrix. 
8. Take the system frequency closest to the initial guess step 3 and repeat steps 

4-7.  
9. Continue iterating until the difference between the initial guess and the final 

frequency is less than some tolerance value near zero.  
10. Consider the next mode of interest and repeat steps 3-9 until all modes of 

interest for the flight condition are investigated. 
11. Consider the next airspeed of interest and repeat steps 2-10 until all flight 

speeds of interest are investigated. 
12. Assemble the frequency and damping, which now applies directly to each 

mode. 
 

The    and Vg plots can be drawn as before, except that the modal 

frequencies and damping ratios are stored directly for each velocity in the span of 

interest. The accuracy of the p-k method depends on the damping associated with 

each particular mode. The proportional viscous structural damping described in 
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section 3.2.2.1 is applied at the system level with Rayleigh coefficients and not at the 

modal level so only the damping on the lowest modes should be considered. The 

aerodynamic damping term is modally dependent, and usually dominates the total 

damping at higher airspeeds, so the p-k method does predict accurate behavior for 

lower lightly damped modes [3].  

A comparison of the p-k and k flutter solution methods in Figure 5.7 shows 

that both methods predict the flutter boundary at exactly the same fluid velocity. 

The damping of the lower bending mode becomes negative at         as the 

torsion frequency approaches the bending frequency, exactly as in the ‘k’ method 

solution.  However, the structural damping is not a necessary component of the ‘p-k’ 

solution so the effect of variable structural damping can be investigated.  The modal 

data is nearly identical to the ‘k’ method solution except that the damping trend of 

the lower mode is under predicted by the ‘k’ method.   
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Figure 5.7 – Sample comparison Vω and Vg plots for flutter solution methods:  

------ ‘k’ and ‘p-k’  
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5.3. Validation  

The ‘p-k’ flutter model was used in all subsequent flutter calculations, and is 

validated here by the classical Goland square wing, which has readily available exact 

flutter characteristics [39]. The square cantilever wing material data is listed in 

Table 3.1 with additional characteristics and International Standard Atmosphere 

(ISA) flow properties listed in Table 5.2.  

Table 5.2 – Case study geometry and flow properties  

Wing  Flight Condition  

Center of Gravity 
Shear Center 

43% chord 
33% chord 

Altitude  
Speed of Sound  

      

9.14 [km] 
303.1 [m/s] 
0.46 [kg/m3] 

 

 The       plots of the data are shown in Figure 5.8 for incompressible 

flow using one cubic interpolation element for bending, torsion and loading. The 

wing flutters at approximately              (       ) where the damping of 

the second mode becomes negative as indicated by the vertical line. The flutter 

velocity is essentially exact as compared to reference [39]. The flutter frequency 

(          ) is determined from a root locus style plot of the frequency over the 

negative damping ratio shown in Figure 5.9. Both plot types are necessary for an 

understanding of the system behavior in the frequency domain.  
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Figure 5.8 – Vω and Vg plots of Goland square cantilever wing with consistent 

cubic interpolation  
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Figure 5.9 – Frequency vs. damping ratio root locus for Goland wing 

configuration with cubic interpolation 

 Both the       plots and the root locus plots describe the stability of the 

system. The       plots show the distribution of the modal damping over the 

flight velocity regime and the upper bound of the regime is determined by transonic 

effects at roughly         (      ) . The Goland lifting model does not account 

for compressibility effects as mentioned in section 4.2.1, so the plots above 

necessarily overestimate the flutter behavior beyond       . However, the 

compressibility does not dramatically affect the trend of the modal behavior, and 

the flutter speed with compressibility is shown in Figure 5.8 at        . 
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Compressibility only affects the fluttering mode and as a result, the fluttering second 

mode interacts with the first mode at a lower velocity.  

The root locus plot in Figure 5.9 shows the modal distribution of the damping 

at the characteristic system oscillations. The real axis of the root locus plot is 

represented by the damping ratio and when the second mode crosses the critical 

zero real value, the system becomes unstable as shown by the location of the flutter 

frequency. The two lower modes of bending and pitch are the most sensitive to 

characteristic oscillations as shown by the expression of a range of damping for 

those modes. The higher modes need not be considered in this case since they are 

not manifest as a range of damping for the higher frequencies. Additionally, real 

aircraft systems experience oscillations in the range of 0-60 Hz as mentioned in 

section 2.2, so any oscillations near or above this range can be neglected, such as the 

fourth characteristic mode in this case.  

The design of the strucutral system determines the resulting aeroelastic 

behavior. The parametric plot shown in Figure 5.10 is an example of the flutter 

speed dependence on the mass axis (MA) and flexural (FA) locations.  The Goland 

square wing appears on the surface, near the minium of the flutter speed plot, which 

means that the strucutral design is very conservative. The flutter speed can be 

increased by moving the MA (   ) forward or moving the FA (   ) aft. The bisecting 

line in the middle of the plot shows the MA and FA as coincident, which 

demonstrates the effect of the distance ec to the aerodyanmic axis (AA). As the 
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coincident MA and FA move forward, the flutter speed increases since the moment 

arm ec of the unsteady loading acting about the AA decreases.   

The bounds of the parametic plot in Figure 5.10 are set by the inherent 

strucutral system stability. If the distantce between the MA and FA,    is greater 

than roughly 20% of the chord length the structral system becomes indeterminate 

due to positive and negative distribution of the eigenvalues indpendent of the 

aerodynamic forcing.  If the structural system is marginally unstable, then the wind-

off natural frequencies are not real values, and the aeroelastic system becomes 

complex. If the aeroelastic matrix is complex, then the ‘p-k’ method breaks down, 

and flutter determination is not possible.  

The unsteady aerodyanmic contribution is consistently modeled with 

Theodorsen’s functions and essentially determines the flutter speed. However, the 

flutter speed estimation is suspect at values in the transonic region due to thermal 

effects, so the flat areas in the farfield of the plot are a representation of the lack of 

confidence in the the flutter estimation at those configurations. The calculations 

below the flat area are reasonable and expected (see [5] pp 180). All aeroelastic 

configurations in Figure 5.10 are longitudinally, statically stable [54] meaning that 

static aerodyanmic effetcs would not cause divergence even if rigid body motion is 

considered. This is important since static divergence, as mentioned in section 4.3, is 

apparent for long slender wings covered in following numerical examples. 

 



www.manaraa.com

 78 
 

 

 

 

Figure 5.10 – Parametric study of the flutter velocity dependence on the wing 

flexural axis and mass axis location 
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Chapter 6 

Computational Flutter Analysis 

The FEM can be effectively applied to aeroelastic flutter because of its 

versatility. The effects of aerodynamic damping and stiffness, complex lifting surface 

configuration [59], and anisotropic material properties [60] can be conveniently 

included. This chapter will focus on the formulation of the FEM for application to 

idealized lifting surfaces. A comparison of the linear flutter boundary results to 

analytical solutions demonstrates excellent accuracy of the proposed formulation.  

6.1. Computational Flutter Model 

The implementation of the FEM based flutter analysis is developed entirely 

within a simple MATLAB program without relying on external commercial FEM, or 

aerodynamic codes. The assembly of the structural element matrices follows the 

usual manner and will not be discussed. However, the structural system is used to 
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determine the wind off characteristic eigenvalues and respective natural 

frequencies with the MATLAB function     [61]. The function relies on Cholesky 

factorization for the symmetric structural system and produces only real 

eigenvalues. The natural frequencies are then used in a ‘p-k’ style algorithm to 

determine the distinct flutter speed. The MATLAB function         [62] was used to 

determine the components of Theodorsen’s function for the calculation of unsteady 

strip aerodynamics.  Finally, the MATLAB function     is used to determine the 

nonsymmetric aeroelastic characteristic in equation 5.30-5.32. The function relies 

on QZ factorization for the nonsymmetric aeroelastic first order matrix, and 

produces complex eigenvalues and eigenvectors [63]. The algorithm is presented in 

Figure 6.1 based on the method described in section 5.2.2. 

6.2. Numerical Examples  

The application of this linear flutter model to real world examples is an 

important and necessary validation of the techniques considered herein. High-

Altitude Long Endurance (HALE) aircraft are a unique example for comparison due 

to extremely large aspect ratio wings (       ).  The long slender wings of HALE 

aircraft are prone to large deflections as a result of an interaction with the airflow, 

but at cruise conditions with minimal deflection the linear analysis accurately 

predicts the flutter stability [18].  Table 6.1 gives the case study data for the HALE 

aircraft of interest, which are taken from reference [64]. 

 



www.manaraa.com

 81 
 

 

Figure 6.1 – Linear flutter ‘p-k’ algorithm 

 

Input geometry data and desired interpolation  

Assemble structural matrices  

 

Determine wind off natural frequencies  

                     

Choose velocity and mode of interest   

 

Determine unsteady loading coefficients for 

specific reduced frequency  
 

Assemble aeroelastic system  

 Apply structural 

damping (if 

appropriate)   

 

Use natural frequencies or matching guess to 

determine reduced frequency 

 

Determine aeroelastic characteristic frequency 

and damping   

 

Match characteristic frequency to reduced 

frequency within specified tolerance  
NO 

YES 

  

Determine flutter velocity and frequency at 

critical value of zero modal damping  

  Apply 

compressibility 

correction   
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Table 6.1 – HALE aircraft case study data 

Wing  Flight Condition  

Half span 
Chord 

Mass density 
Polar moment area 

Center of Gravity 
Shear Center 

Bending Rigidity 
Torsional Rigidity 

16 [m] 
1 [m] 
0.75 [kg/m] 
0.033 [m4] 
50% chord 
50% chord 
2 x 104 [Nm2] 
1 x 104 [Nm2] 

Altitude  
Speed of Sound  

      

20 [km] 
295.1 [m/s] 
0.088 [kg/m3] 

 

The linear flutter speed and frequency are calculated as          and 

           respectively. A comparison to the published results is shown in Table 6.2 

for multiple cases. The calculated linear cases demonstrate excellent agreement 

with the published results. The published values are determined with 8 finite 

elements in a similar manner to the technique presented herein, except that a finite-

state aerodynamic model is used instead to represent the aero loads in a set of time-

domain differential equations [3]. The calculated results are shown for various 

numbers of elements and interpolations, but the flutter speed results converge 

monotonically with the addition of more elements. The various    –    plots for 

each calculated case are shown in Figure 6.2 through Figure 6.4.  
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Figure 6.2 – Vω and Vg  plots with 1 element cubic interpolation  
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Figure 6.3 – Vω and Vg plots with 5 element cubic interpolation 
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Figure 6.4 – Vω and Vg plots with 1 element quintic interpolation 
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Table 6.2 – Comparison of linear flutter results 

 
Flutter Speed 

[m/s] 
Flutter 

Frequency [Hz] 

 8-e Analysis of [64] 
1-e cubic interpolation  
5-e cubic interpolation 

1-e quintic interpolation 

32.2 
31.6 
33.1 
33.1 

3.40 
3.73 
3.41 
3.41 

 

The cubic interpolation effectively predicts the low order or “binary” effects 

of the first two modes of bending and torsion, but is a poor predictor of the higher 

order effects. The cubic interpolation under predicts the behavior of the second 

bending (Mode 3) and second torsion (Mode 4) modes, leading to an overly 

conservative estimation of the flutter velocity as shown in Figure 6.2. The modal 

behavior is accurately captured with 5 cubic elements as shown in Figure 6.3.  The 

coalescence of the first two modes combined with the high damping of the lowest 

bending mode (Mode 1) results in a manifestation of flutter behavior in Mode 3 as it 

extracts energy from the coalescence of all three lower modes. The fourth mode 

does not interact with the lower modes, but the damping trend is not well predicted 

by low order cubic interpolation. 

The quintic interpolation accurately predicts the lower and higher order 

modes of interest especially in high aspect ratio wings. The plot in Figure 6.4 shows 

excellent agreement with the converged flutter solution, with only one element. The 

higher mode effects cannot be neglected in this case as shown by Figure 6.5, 
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therefore, the quintic interpolation is well suited for low DOF linear analysis of high 

aspect ratio wings.  

 

Figure 6.5 – Frequency vs. damping ratio root locus for HALE wing 

configuration  

 

6.3. Model limitations 

The beam representation for a wing structure can be valuable for early 

phases of aircraft design when sufficient data regarding the structure is not 

available. In the later stages of design, the complexities of aircraft components are 

difficult to model with a beam representation, and the analysis and certification of 

aircraft require a more detailed FE structural mesh. The logical extension of the 
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usage of beam structures is a coupling with compatible shell elements to allow for 

accurate modeling of the outer skin of a semi-moncoque structure. The use of shell 

elements to model the panels and beam elements to model the wing spars and 

booms allows for much more accuracy and is a common industrial practice [5]. 

However, the upgraded FE structural model does not give any benefit to the mass 

model of the aircraft since a significant portion of aircraft mass is non-structural 

such as payload and fuel. The upgraded structural model is usually condensed into a 

beam representation where only a select set of “master” DOF are considered [65].  

The mass is often idealized as a beam, thus the original model proposed in this 

thesis is uniquely justified. 

Accurate modeling of flutter phenomenon requires the most precise 

aerodynamic models with an inclusion of unsteady three-dimensional effects. The 

strip loading method is commonly used for airworthiness certification [5], but a 

panel method is a more accurate three-dimensional unsteady model. The strip 

loading model also cannot accurately represent transonic effects where flutter often 

occurs, therefore, a coupled CFD-structural FE model with fluid structural 

interaction must be used in highly nonlinear cases.  

 

 



www.manaraa.com

 89 
 

Chapter 7 

Conclusion 

7.1. Thesis Summary 

The formulation of classical structural finite element methods with the 

inclusion of aerodynamic stiffness and damping effects has been covered. The free 

vibration modes of eccentric structures fundamentally determined the aeroelastic 

behavior, and a quintic interpolation of the assumed displacement shape accurately 

predicted the characteristic behavior with fewer elements. Static aerodynamics was 

used as the basis for loading applied to eccentric structures, and for consideration of 

time independent behavior of aeroelastic systems. The unsteady strip loading 

formulation was then used as a direct extension of static aerodynamics for a linear 

dynamic analysis in the frequency domain.  

The frequency domain formulation of the characteristic aeroelastic equation 

led to a flutter boundary prediction with a frequency matching scheme and a modal 
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interaction illustration in the form of the       plots. The cubic interpolation 

element accurately predicted low order effects when higher characteristic 

frequencies were outside the range of interest as in binary flutter. However, the 

quintic interpolation better predicted higher order characteristic effects when 

multimodal interactions were important for low DOF flutter prediction, such as the 

HALE aircraft wing. The quintic interpolation aeroelastic element predicted 

essentially exact low and high modal solutions with a single element as compared to 

analytical solutions and finite element solutions with many elements. Thus, the 

quintic interpolation aeroelastic element seems to be a more powerful tool than the 

classical cubic interpolation element.  

7.2. Further Research   

Aeroelasticity is a growing field of importance as new and exotic methods of 

air and space transportation are explored. The computational formulation of an 

aeroelastic problem requires a background in every constituent field, and further 

research in applied mathematics, computational science, and aerodynamic loading 

is necessary for more advanced analysis. CFD based aeroelastic analysis seems to be 

the trend of current and potential research, but there are also many approximating 

techniques worth investigating. For example, the dynamic element method [28, 66] 

is a structural response approximation technique that expands the static 

interpolation function to include the frequency effects directly. The doublet-lattice 

method is an aerodynamic loading approximation technique common in industrial 
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practice that models the loading of discrete panels with bounded vortices producing 

accurate three-dimensional predictions.  Similar approximate analysis techniques 

tend to achieve a much quicker solution, but usually at the cost of accuracy, so any 

further exploration of such techniques should be integrated into a compatible 

computation method.  
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Appendix A 

Explicit quintic bending element stiffness and mass matrices  
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